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Only a few results are known on continuity properties of the set-valued metric
projection in nonlinear uniform approximation. In this paper we investigate this
mapping in the case of best uniform approximation by splines of degree m with k
free knots. A characterization of those functions at which the metric projection is
upper semicontinuous is given. It is found that the metric projection is upper
semicontinuous if and only if A< m, and that it is upper semicontinuous at all
“normal” functions. On the other hand, it is shown that the metric projection is
never lower semicontinuous.  © 1992 Academic Press, Inc.

1. INTRODUCTION

There is a vast literature on continuity properties of the set-valued metric
projection onto linear subspaces (see, e.g., the surveys Deutsch [7, 8],
Niirnberger and Sommer [14], Singer [18], Vlasov[19], and the
references therein). On the other hand, not as many results are known
about this mapping in nonlinear approximation (see, e.g., Berens and
Finzel [1], Brosowski and Deutsch [5], Deutsch [6], Niirnberger [9],
Schmidt [15], and Singer [18]).

The aim of this paper is to investigate the metric projection onto S, ,
the set of polynomial splines of degree m with k free knots. This is the
mapping which associates to each function fe C[aq, b] the set P, (f)=
{5,€S il f—s/l =inf,5, , If—sll} of its best uniform approximations
from S,, .. We give a characterization of those functions in C[a, b] at
which Pg . is upper semicontinuous. As a consequence we get that P, is
upper semicontinuous on C[a, 6] if and only if k <m. Moreover, it follows
that Pg,, is upper semicontinuous on the set {feC[a, b]:Pg (f)c
Cl[a, b] and Psm’k(f)r\S,,,’kq:Q}. On the other hand, we show that
Ps, . 1s never lower semicontinuous.

The same statements hold for the set-valued mapping which associates to
each function fe[a, b], the nonempty set Pg (f)nC[a,b] of its
continuous best approximations.
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In a further paper we apply the results to derive uniqueness theorems
(announced in [12]) for S, ..

2. MaIN RESULTS

Let C[a, b] be the space of all continuous real-valued functions f on
[a,b] endowed with the supremum norm |f|l=sup,c . s If ()l
Moreover, let points a=x,<x,;< -+ <x,<x,,;=b and integers
my,...me{l,.,m+1} be given, where m>1 and r>1. We denote by
S,,,(fn‘l’ ""'"’:,) the space of polynomial splines of degree m with r fixed knots
Xpy e X, of multiplicities m,, .., m,, and by S, , the set of polynomial
splines of degree m with k free (multiple) knots, where k>1 (see, e.g.,
Niirnberger [11] and Schumaker [17]). Here we use the convention that
a spline has a knot of multiplicity m + 1 if for this spline no continuity is
required at the knot.

A spline s,€ S, , is called the best uniform approximation of a function
feCla, b] from S, , if ||f—s.)=inf,.s, , [If—sll. The nonempty set of
best uniform approximations of f from S,, . is denoted by Pg, ,(f), and the
resulting set-valued mapping Pg, ,:Cla, b] - 2% is called the metric
projection onto S, .

In the following we investigate continuity properties of this mapping.

DEerFINITION 1. The metric projection Pg ,:C[a, b] - 2%+ is called
upper semicontinuous (u.s.c.) (respectively lower semicontinuous (1s.c.)) at
fe C[a, b] if for each sequence (f,) = C[a, b] with f, - f and each closed
subset 4 of S,, , with Py (f,)nA#Q (respectively P, (f,) < A4) for all
n, we have Ps (f)nA# (respectively Pg (f)<A). Ps,, is called
upper semicontinuous (respectively lower semicontinuous) if it is us.c.
(respectively Ls.c.) at every function fe C[a, b]).

The first result shows that the upper semicontinuity of the metric
projection Pg , at a given function depends on the multiplicities of the
knots of its best approximations from S,,, ;.

THEOREM 1. For a function fe Cla, b]\S,, ., the following statements
are equivalent:
(i) Ps,, is upper semicontinuous at f.

(i) There does not exist a spline se Ps_ (f)NS,(
is discontinuous or m+2+3_ m;,—max,_, , m;<k.

x1 Xy
my, .., my

) such that s

Proof. (ii) — (i). Suppose that (ii) holds. Let a closed set 4 in S, 4,
feCla,b] and (f,)<=Cla, b] be given such that f, - f and Py (f, )
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A+ for all n. We have to show that Py (f)nA# ¢ which implies
that P , is upper semicontinuous at f. For all n, we choose a spline
5,€Pg, k( f.)n A. We will show that there exist a spline s€ P, (f) and a
subsequence (s, ) of (s,) such that lim,_, , |s—s, | =0. Since 4 is closed,
it follows that se A4 which proves the claim. It is easy to see that (s,) is a
bounded sequence. Therefore, it follows from Braess [4, p. 229] that there
exxsts a spline se Pg, (f )N S () ':,x’ ) such that a subsequence of (s,),
[a, b\ {x}..r X, }. Moreover the knots of (s,) converge to the knots of s.
It follows from (ii) that s is continuous and m+2+37_,m,—
max,_, ,m;>k. Forall ie {1, .., r}, let m, be the minimal multiplicity of
x; such that se S,,,("l x’) Now let an 1ndex je{l,.., r} be given. By
going to a subsequence we may assume that for all », the same number of
(multiple) knots of s, say y; ,< -+ <, ., converges to x;. Then we have
p;=m;, because, if p,<m;<m, then it follows from Braess [4 p. 229] that

Is = $ull ca2rc-1 + . /22054 501 = 0

and that s has a knot of multiplicity p, at x; which is a contradiction.
Moreover, we have p; <m + 1, because, if p; > m + 2, then, since (ii) holds,

Z pi=m+2+ Z m;=m+2+ Z m;— max m;>k
i=1 i=1 i=1 i=L..r
i#j

which is a contradiction to s,€ S, ,. We define
K.z, t)=(t—-2)7, (z1)ela blx[ab]

and denote by K,,[zy, .., z;, 1, t] the divided difference of order / of the
function z — K,,(z, t) with respect to the points z,, ..., z,, ;. Then for all n,
the spline s, can be written as

n(t)_' Z alnt + z bl nK [yl 7y o ’yt ns ]3

i=0 i=1
1 1
te E(Xj'l +x}-),§(xf+xj+,) .
For sufficiently large n, we have

3 1
X1+ 3( =X )<Y a < Y <X+ 5000 — X))



148 GUNTHER NURNBERGER

Now, we choose points ¢, ..., ¢ +1 such that

m+pj
%(xj—l+xj)<tl< e <y <X +%(xj—'xj71)<xj+lli(xj+l —X;)
<tm+2< <tm+p,-+l S%(xj+xj+l)°

It is well known and easy to verify that the determinant generated by
inserting these points into the m + p; + 1 functions

Lt t7, K[, - 1, o K[ s X5, -]

is different from zero. Therefore, since (s,) is bounded and for all

te[a, bN\{x},

Kol Y1 ns oo Vions 112 Ky [ X5 00y X5, t], i=1,..,p;,

the sequences (q; ,), i=0,..,m, and (b, ,), i=1, .., p;, are bounded. Thus
by going to subsequences, we may assume that these sequences converge.

Moreover, since the spline s is continuous, we have lim,,_, , b,, .1 , =0,
if p,=m+ 1. This implies that

s — s, LO/2)(x—1 + xp), (1/2) (x5 + %7410 0.

Since this holds for every index je {1, ..., r}, it follows that |s—s,| — 0.

(1) — (i1). Suppose that (ii) fails. We will show that Pg_, is not upper
semicontinuous at f. We first assume that there exists a spline se Pg, ,(/f)
which is discontinuous at some knot x,. Then it follows from
Schumaker [16] (see also Braess [4, p. 230]) that there exists a sequence
(8,) = Ps,, (/) with the following properties. For all n, the spline §, has a
simple knot at x; — o, and a knot of multiplicity m at x; + f,,, where «,, >0,
f,>0and o, -0, 8, »0.

Moreover, for all n,

.S~'n(t)=S(t), te[asb]\(xj_anaxj+ﬂn)’
and

§,(2) > s(2), tefa, b1\ {x,}.

We set for all n, s,=5,+ 1/n and f,=f+ 1/n. Since f—s has alternating
extreme points, for all n, s5,¢ Ps, (f). Moreover, since §,€Pg (f), it
follows that s,e P, (f,). The set A= {s,:neN} is closed, since no
subsequence of (s,) converges uniformly. Now, since f, = f, Ps, (f,)N
A#J for all n, but Pg ,(f)n A=, the metric projection Pg_, is not
upper semicontinuous at f.
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Finally, suppose that there exists a spline

Xy e X,

sePs (f)nS, (m )cC[a,b]

19 =es r

Vin=Xj, i=2,.,m+1,

and choose points

yl,n<xj<ym]+2,n< <ym+2,n

such that
yi,n—"xi, i=1,...,m+2.
Let B, be the normalized B-spline of degree m associated with the knots

Y1in S SVmi2n

By multiplying B, by an appropriate factor for all n, we may assume that
B (x)=5(f(x)—s(x;)) if f(x;)—s(x;)#0
and
B,(x)=3 /-5l if f(x;))—s(x;)=0.

For all n, we set §,=s+ B,. Then for sufficiently large n, §,€ Ps, (f). As
above, we set, for all n,5,=5,+1/n, f,=f+1/n, and A= {s,:neN}.
Since no subsequence of (s,) converges uniformly, the set 4 is closed.
Analogously as above, we have f, - fand P (f,)nA# < for all n, but
Ps,. ()~ A= . Therefore, P , is not upper semicontinuous at f. This
proves Theorem 1.

The proof of Theorem 1 gives the following result on the convergence of
sequences in S, -

PROPOSITION.  For a spline s€8,, ., 0S,(,' """ ), the following state-
ments are equivalent:

(i) If a sequence (s,) in S,, , converges pointwise to s (except at the
knots x, .., x,), then s, converges uniformly to s.

(i) s is continuous and m+2+3_ m,—max,_, ,m,

vy i

> k.
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As a first direct consequence of Theorem 1, we obtain a characterization
of the upper semicontinuity of Pg .

CoROLLARY 1. The metric projection Pg  is upper semicontinuous on
Cla, b] if and only if k <m.

Proof. 1t is easy to verify that Pg_, is upper semicontinuous on S, ;.
Suppose that k<m and let fe C[a, b]\Sm « be given. Then all splines
s€ P, (f) are continuous and the inequality in Theorem 1 is obviously
not satisfied for s. Therefore, it follows from Theorem 1 that Py , is upper
semicontinuous at f.

Now, suppose that k > m. Then there exists a spline s€ S, , which is not
continuous. It is clear that we can construct a function fe C[a, b1\S,, «
such that f—s has m+ 2k + 2 alternating extreme points on some knot-
interval of s. Then by Schumaker [16], se P, (f) and by Theorem I,
Pg, , is not upper semicontinuous. This proves Corollary 1.

The second conclusion of Theorem 1 shows that Pg , is upper
semicontinuous on a large subset of C[a, b], namely at all “normal”
functions.

COROLLARY 2. The metric projection P, is upper semicontinuous on

{feCla,b]:Ps, (f)=Cla,b] and Ps, (f) NS, =T}

Proof. Let a function f€ C[a, b] be given such that Py (f)<C[a, b]
and Pg (f)N S, «_1=. This means that for all sePg (f)n
S ("l ':j,x’ ), we have m;<m, i=1,.,r, and 3|_, m;=k. Therefore,

the 1nequa11ty in Theorem 1 cannot be satisfied and Pg,, is upper
semicontinuous at f. This proves Corollary 2.

While by Corollary 1, the metric projection Pg , is upper semi-
continuous if and only if kK <m, we now show that Pg  is never lower
semicontinuous.

THEOREM 2. The metric projection Pg_,:Cla, b]—2°"* is not lower
semicontinuous.

Proof. We construct a function fe C[a, b] and a sequence (f,) in
Cla, b] such that f, —f, P (f,)={so} for all n and {s,} & Ps, (/)
which shows that Py, , is not lower semicontinuous. To do this, we choose
arbitrary points

a=xo<xl< e <.Xk<xk+l=b
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and a spline sy € S,, +\S,. r_; Which has active knots at x,, .., x, such that
so(t)=(t—x,)", te[xe_q, xc), and s4(2)=0, te [x,, b]. Moreover, we
define feC[xy, xi1] such that f(x,)=—1, f((xe+xe5:1)/2)=1,
f(xx4 )= —1 and fis linear elsewhere on [x,, x,,;]. We may extend f to
a function in C[a, b] such that | f—s,|| =1, f—s, is piecewise linear and
f—s, has sufficiently many (which will be specified later) alternating
extreme points on each knot-interval [x,, x;,,], i=0,..,k—1. We now
define a sequence (f,) in C[a, b] as follows. For all n, we set

fn(t) =f(t), te [a’ xk] o [xk + 1/”9 b]a
fn(t)= _15 te[xk’xk+1/2n]a
[ is linear on (x; + 1/2n, x, + 1/n).

Then it follows that f, — f.

Now, let y, < --- <y, be the knots of 5, counting each knot twice.
Moreover, we choose arbitrary points y_,, < --- <y_;<yo=a and
b=y i1 <Vas2< " <Vorirm+1- We have the freedom to define f on
[a, x,] such that for all n, f,—s, has at least j+ 1 alternating extreme
points in each knot-interval (¥, ¥iym+,) S (Vs Y2kt ms 1) J 2 L.

Note that by construction theinterval ( Yo 15 Vaxwm+1) S (Y — s Vakema 1)
Jj=1, contains three alternating extreme points of £, —s, for all n, but only
two alternating extreme points of f— s,.

Moreover, by construction f—s, has the same number of alternating
extreme points on [a,b] as f—s,, and therefore, f—s, has at least
m+ 2k + 2 alternating extreme points on (y_,,, Yax+m+1)- Therefore, it
follows from Schumaker [16] and Braess [3] that s, € P, ,(f). Moreover,
since f, — s, has sufficiently many alternating extreme points in each inter-
val (¥i, ¥iym+;), it follows from Niirnberger [10] that s, is a (strongly)
unique best approximation of f, {from S, , for all n. We now show that
{so} # Ps, (f). For all £>0 we define 5,€S,, \S,, x_; by

s.(2) =s80(2), tela, x,_1,
s(t)=(t—x )", tex,_y, x,+e],
and
()=t —x )"+ a(t— (x, + )7, te[x,+e¢ bl,
where

2= —(3(xXe ) — X)) G (Xp 11 — X)) — €)™
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Then it follows that

ss(t)>0a te(xks xk+%('xk+l_xk))a

and

5.(1) <0, 1€ (x4 3(xk —xe), b1

Since f is linear on [x,, (x; + X4, ,)/2], there exists a sufficiently small
£>0 such that

If(O)—s <1, relxe, xe+el

Moreover, since |s, || =0 for ¢ — 0, for sufficiently small ¢ >0,

||f_ Se ” [xks xk41] 1

which implies that

If=s:ll=1=f—sol.
This shows that 5,#s, € P, (/) and proves Theorem 2.

We note that the proofs of the above results show that the same
statements hold, if we consider the mapping Py, , : C[a, b] — 25+~ Cla 8],
defined by Ps,,, f)=Pg, (f)nCla, b] for all fe C[a, b], instead of PSM
It was shown by Schumaker [16] that Ps,,, (f)# D for all feC[a,b]. In
[12] we incorrectly announced the result that P , 18 upper semi-
continuous (compare the statement in Corollary 1 for Py ,).

We finally consider a further continuity property. A continuous mapping
F:C[a,b]— S,  is called a continuous selection for Py,  if F(f)e Ps, ,(f)
for all fe Cla, b].

In the fixed knot case, it was proved by Niirnberger and Sommer [13]
that there exists a continuous selection for the metric projection
Pg, (31 ) if and only if k<m+1 (for further continuity resuits see

5 and Niirnberger [2], Niirnberger and Sommer [14], and
Niirnberger [11]). On the other hand, the problem of the existence of
continuous selections for P, , is unsolved at present.
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