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Only a few results are known on continuity properties of the set-valued metric
projection in nonlinear uniform approximation. In this paper we investigate this
mapping in the case of best uniform approximation by splines of degree m with k
free knots. A characterization of those functions at which the metric projection is
upper semicontinuous is given. It is found that the metric projection is upper
semicontinuous if and only if k '" m, and that it is upper semicontinuous at all
"normal" functions. On the other hand, it is shown that the metric projection is
never lower semicontinuous. © 1992 Academic Press, Inc.

1. INTRODUCTION

There is a vast literature on continuity properties of the set-valued metric
projection onto linear subspaces (see, e.g., the surveys Deutsch [7,8],
Niirnberger and Sommer [14], Singer [18], Vlasov [19], and the
references therein). On the other hand, not as many results are known
about this mapping in nonlinear approximation (see, e.g., Berens and
Finzel [1], Brosowski and Deutsch [5], Deutsch [6], Niirnberger [9],
Schmidt [15], and Singer [18]).

The aim of this paper is to investigate the metric projection onto Sm.k,
the set of polynomial splines of degree m with k free knots. This is the
mapping which associates to each function/EC[a,b] the set PSm,k(f) =
{SfE Sm. k : II/-sfll =infsEsm,k II/-sll} of its best uniform approximations
from Sm, k' We give a characterization of those functions in C[a, b] at
which P Sm,k is upper semicontinuous. As a consequence we get that PSm,k is
upper semicontinuous on C[a, b] if and only if k,;;; m. Moreover, it follows
that PSm,k is upper semicontinuous on the set {IE C[a, b] : PSm,k(f) C

C[a,b] and PSm)l)nSm,k-1=0}. On the other hand, we show that
PSm,k is never lower semicontinuous.

The same statements hold for the set-valued mapping which associates to
each function IE [a, b], the nonempty set PSm)f) n C[a, b] of its
continuous best approximations.
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In a further paper we apply the results to derive uniqueness theorems
(announced in [12]) for Sm,k'

2, MAIN RESULTS

Let C[a, b] be the space of all continuous real-valued functions I on
[a, b] endowed with the supremum norm IIIII = SUP'E [a,b] 1/(t)I.
Moreover, let points a=xo<x l < ... <Xr<Xr+1 =b and integers
ml, ..., mr E {1, ..., m + 1} be given, where m ~ 1 and r ~ 1. We denote by
Sm(l, ..., x, ) the space of polynomial splines of degree m with r fixed knots

ml.···.mr
XI' ... , X r of multiplicities m l , ... , m" and by Sm,k the set of polynomial
splines of degree m with k free (multiple) knots, where k ~ 1 (see, e.g.,
Niirnberger [11] and Schumaker [17]). Here we use the convention that
a spline has a knot of multiplicity m + 1 if for this spline no continuity is
required at the knot.

A spline s/ E Sm, k is called the best uniform approximation of a function
IEC[a, b] from Sm.k if II/-s/11 =infsESm,k II/-sil. The nonempty set of
best uniform approximations of/from Sm,k is denoted by PSm,k(f), and the
resulting set-valued mapping PSm,k : C[a, b] --+ 2Sm.k is called the metric
projection onto Sm, k'

In the following we investigate continuity properties of this mapping.

DEFINITION 1. The metric projection PSm,k : C[a, b] --+ 2Sm,k is called
upper semicontinuous (u.s.c.) (respectively lower semicontinuous (l.s.c.)) at
IE C[a, b] if for each sequence (fn) c C[a, b] within --+land each closed
subset A of Sm, k with PSm,k(fn) n A of. 0 (respectively Psm,k(fn) C A) for all
n, we have PSm,k(f) n A of. 0 (respectively PSm,k(f) C A). PSm,k is called
upper semicontinuous (respectively lower semicontinuous) if it is U.S.C.

(respectively l.s.c.) at every function IE C[a, b].

The first result shows that the upper semicontinuity of the metric
projection P Sm, k at a given function depends on the multiplicities of the
knots of its best approximations from Sm, k'

THEOREM 1. For a lunction IE C[a, b ]\Sm, k> the lollowing statements
are equivalent:

(i) PSm,k is upper semicontinuous at f

(ii) There does not exist a spline s E PSm,k(f) n SmC::::,:;') such that s
is discontinuous or m + 2 + L~= 1 m i - max i = 1, .... r m i ~ k.

Proof (ii) -+ (i). Suppose that (ii) holds. Let a closed set A in Sm, k>

IE C[a, b] and (fn) c C[a, b] be given such that In -+1 and PSm. k(fn) n
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A # 0 for all n. We have to show that PSm,k(f) n A # 0 which implies
that PSm,k is upper semicontinuous at f For all n, we choose a spline
Sn E PSm,k(fn) n A. We will show that there exist a spline SE PSm.k(f) and a
subsequence (sn ) of (sn) such that limq~ 00 lis - Sn /I = O. Since A is closed,q q

it follows that SEA which proves the claim. It is easy to see that (sn) is a
bounded sequence. Therefore, it follows from Braess [4, p. 229] that there
exists a spline S E PS k(f) n Sm(l . .... x, ) such that a subsequence of (sn),

m. ml •...,mr .

again denoted by (sn), converges to S uniformly on each compact subset of
[a, b]\{xI'''' x r }. Moreover, the knots of (sn) converge to the knots of s.
It follows from (ii) that S is continuous and m+2+L~=lmi­

max i = I, ... r m j > k. For all i E {l, ..., r}, let m i be the minimal multiplicity of
Xi such that S E Sm(X1

• • '. x, ). Now, let an index j E {I, ..., r} be given. By
mi,···,rnr

going to a subsequence, we may assume that for all n, the same number of
(multiple) knots of Sn, say Yl.n~ ... ~Ypj,n, converges to Xi' Then we have
Pj?mj, because, ifPj<mj~m, then it follows from Braess [4, p. 229] that

and that S has a knot of multiplicity Pj at xj which is a contradiction.
Moreover, we have Pj ~ m + 1, because, if Pj ~ m + 2, then, since (ii) holds,

r r r

L pi?m+2+ L mi?m+2+ L m j - max mi>k
i=1 i=1 ;=1 i=l, ...• r

i#j

which is a contradiction to Sn E Sm, k' We define

(z, t) E [a, b] x [a, b]

and denote by Km [z I' ..., Z / + I' t] the divided difference of order I of the
function z -+ Km(z, t) with respect to the points z I' ... , z/+ I' Then for all n,
the spline S n can be written as

m Pj

Sn(t) = L ai,n ti + L bi,nKm[YI,n, ""Yi,n, t],
i=O i= 1

For sufficiently large n, we have
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Now, we choose points II' ... , Im + pj + 1 such that

!(xj _ 1 +Xj)~/1 < ... <lm+ 1 <xj _ 1 +hxj-xj_d<xj+1(Xj+l-X)

<lm+ 2 < ... <lm+pj+1 ~!(xj+xj+d.

It is well known and easy to verify that the determinant generated by
inserting these points into the m +Pj + 1 functions

is different from zero. Therefore, since (sn) is bounded and for all
IE [a, b]\{xJ,

i= 1, ""Pj'

the sequences (a;.n), i=O, ..., m, and (b i• n), i= 1, ""Pj' are bounded. Thus
by going to subsequences, we may assume that these sequences converge.

Moreover, since the spline S is continuous, we have limn ~ 00 bm + I. n =0,
if Pj = m + 1. This implies that

Since this holds for every index j E {l, ..., r}, it follows that lis - Sn II -.0.

(i) -. (ii). Suppose that (ii) fails. We will show that P s k is not upper
semicontinuous at f We first assume that there exists a spiIne S E PSm,k(f)
which is discontinuous at some knot xj • Then it follows from
Schumaker [16] (see also Braess [4, p. 230]) that there exists a sequence
(sn) C PSm,k(f) with the following properties. For all n, the spline sn has a
simple knot at x j - rt.n and a knot of multiplicity m at x j + f3n, where rt.n> 0,
f3n > 0 and rt.n -. 0, f3n -. O.

Moreover, for all n,

and

We set for all n, Sn = sn + lin and fn = f + lin. Since f - S has alternating
extreme points, for all n, sn¢PSm,k(f). Moreover, since snEPSm,k(f), it
follows that Sn EPSm.k(fn)' The set A = {sn : n EN} is closed, since no
subsequence of (sn) converges uniformly. Now, since fn -.f, PSm,k(fn) n
A # 0 for all n, but Psm,k(f) n A = 0, the metric projection P Sm,k is not
upper semicontinuous at f
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Finally, suppose that there exists a spline

SE PSm,k(f) (') Sm (XI' .." X
r ) C C[a, b]

ml, .."m r

149

such that m + 2 +L~= I m i - max i = I, '" r m i ~ k, Let xj be a knot with
mj=maxi~I, ...,rmi~m, We set

i=2" ..,mj +1,

and choose points

such that

i= 1, ..., m+2.

Let Bn be the normalized B-spline of degree m associated with the knots

YI, n ~ ... ~Ym+2,n'

By multiplying Bn by an appropriate factor for all n, we may assume that

and

For all n, we set in = S+ Bn' Then for sufficiently large n, in E PSm,k(f). As
above, we set, for all n, Sn = in + lin, fn = f + lin, and A = {sn : n EN}.
Since no subsequence of (sn) converges uniformly, the set A is closed.
Analogously as above, we have fn --+ f and P Sm,k(fn) (') A =10 for all n, but
P Sm,k(f) (') A = 0· Therefore, P Sm,k is not upper semicontinuous at f This
proves Theorem 1.

The proof of Theorem 1 gives the following result on the convergence of
sequences in Sm, k'

PROPOSITION. For a spline s E Sm k (') Sm("'" X,), the following state-
• ml.···.m,

ments are equivalent:

(i) If a sequence (sn) in Sm,k converges pointwise to s (except at the
knots X I' ... , X r), then Sn converges uniformly to s.

(ii) s is continuous and m + 2 +L~= 1 m i - max i = I, .... r m i > k.
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As a first direct consequence of Theorem 1, we obtain a characterization
of the upper semicontinuity of P Sm k'

COROLLARY 1. The metric projection PSm.k is upper semicontinuous on
C[a, bJ if and only if k:::;; m.

Proof It is easy to verify that PSm.k is upper semicontinuous on Sm. k'
Suppose that k:::;; m and let IE C[a, bJ\Sm, k be given. Then all splines
s E PSm,k(f) are continuous and the inequality in Theorem 1 is obviously
not satisfied for s. Therefore, it follows from Theorem 1 that PSm,k is upper
semicontinuous at f

Now, suppose that k > m. Then there exists a spline s E Sm, k which is not
continuous. It is clear that we can construct a function IE C[a, bJ\Sm,k
such that 1- s has m + 2k +2 alternating extreme points on some knot­
interval of s. Then by Schumaker [16J, s E PSm)f) and by Theorem 1,
PSm.k is not upper semicontinuous. This proves Corollary 1.

The second conclusion of Theorem 1 shows that PSm,k is upper
semicontinuous on a large subset of C[a, bJ, namely at all "normal"
functions.

COROLLARY 2. The metric projection PSm, k is upper semicontinuous on

{jEC[a,bJ :Psm,k(f)cC[a,bJ and Psm)I)nSm,k-I=0}.

Proof Let a function IE C[a, bJ be given such that PSm,k(f) c C[a, bJ
and PSm,k(f)nSm.k-l=0. This means that for all sEPSm,k(f)n
Sm(Xl" ..,X,), we have m;:::;;m, i= 1, ..., r, and L;=l m;=k. Therefore,

ml.···.m,
the inequality in Theorem 1 cannot be satisfied and PSm,k is upper
semicontinuous at f This proves Corollary 2.

While by Corollary 1, the metric projection PSm.k is upper semi­
continuous if and only if k:::;; m, we now show that PSm, k is never lower
semicontinuous.

THEOREM 2. The metric projection PSm,k: C[a, bJ --+ 2Sm,k is not lower
semicontinuous.

Proof We construct a function IE C[a, bJ and a sequence (fn) in
C[a, bJ such that In --+f, PSm,k(fn) = {so} for all n and {so} ~ PSm,k(f),
which shows that PSm.k is not lower semicontinuous. To do this, we choose
arbitrary points
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and a spline So E Sm. k\Sm, k-I which has active knots at x I' ..., Xk such that
so(t) = (I - Xk)m, IE [Xk_l, Xk], and so(t) = 0, IE [Xb b]. Moreover, we
define fE C[Xk' Xk+ I] such that f(Xk) = -1, f((Xk + Xk+ d/2) = 1,
f(Xk+ I) = -1 andfis linear elsewhere on [Xb Xk + I]. We may extendfto
a function in C[a, b] such that Ilf- So II = 1, f - So is piecewise linear and
f - So has sufficiently many (which will be specified later) alternating
extreme points on each knot-interval [x;, X i + I], i = 0, ..., k -1. We now
define a sequence Un) in C[a, b] as follows. For all n, we set

fn(t) = f(l),

fn(t) = -1,

IE [a, x k ] U [x k + lin, b],

IE [Xb Xk + 1/2n],

fn is linear on (xk+ 1/2n, Xk + lin).

Then it follows that fn --+f
Now, let YI ~ ... ~Y2k be the knots of So counting each knot twice.

Moreover, we choose arbitrary points Y -m < ... < Y -I < Yo = a and
b=Y2k+I<Y2k+2< ... <Y2k+m+I' We have the freedom to definefon
[a, Xk] such that for all n, fn - So has at least j + 1 alternating extreme
points in each knot-interval (Yi' Yi+m+) C (.Y -m' Y2k+m+ I)' j ~ 1.

Note that by construction the interval (Y2k-l, Y2k+m+ I) C (y -m' Y2k+m+ I)'
j ~ 1, contains three alternating extreme points of In - So for all n, but only
two alternating extreme points ofI-so.

Moreover, by construction I-so has the same number of alternating
extreme points on [a, b] as f - Sn' and therefore, f - So has at least
m + 2k + 2 alternating extreme points on (y _m' Y2k + m + I)' Therefore, it
follows from Schumaker [16] and Braess [3] that SoEPSm)f). Moreover,
since In - So has sufficiently many alternating extreme points in each inter­
val (y;, Yi+m+), it follows from Nurnberger [10] that So is a (strongly)
unique best approximation of fn from Sm, k for all n. We now show that
{so} =1= PSm.kU), For all B>°we define s. E Sm, k\Sm, k-I by

and

s.(/) = So(/),

s.(t) = (I - xdm,

IE [a,xk_d,

IE [Xk_l, Xk+B],

where
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Then it follows that

s.(t) > 0,

and
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s.(t) < 0,

Since f is linear on [Xk, (Xk + Xk + I )/2], there exists a sufficiently small
e> 0 such that

If(t) - s.(t)1 ~ 1,

Moreover, since lis. II -+°for e -+ 0, for sufficiently small e> 0,

Ilf- s. II [Xk, Xk+ll = 1

which implies that

Ilf- s.ll = 1 = Ilf- So II·

This shows that So # SeE PSm, k(f) and proves Theorem 2.

We note that the proofs of the above results show that the same
statements hold, if we consider the mapping P Sm.k : C[a, b] -+ 2Sm,k n qa, b l ,

defined by Psm)f) = PSm,k(f) n C[a, b] for allfEC[a, b], instead of PSm,k'
It was shown by Schumaker [16] that PSm,k(f) # 0 for allfE C[a, b]. In
[12] we incorrectly announced the result that PSlTJ,k is upper semi­
continuous (compare the statement in Corollary 1 for Psm,J

We finally consider a further continuity property. A continuous mapping
F: C[a, b] -+ Sm, k is called a continuous selection for PSm,k if F(f) E PSm,k(f)
for all f EC[a, b].

In the fixed knot case, it was proved by Nurnberger and Sommer [13]
that there exists a continuous selection for the metric projection
PSm( Xl, ••. , Xk) if and only if k ~ m + 1 (for further continuity results see
Bere~s'" I and Nurnberger [2], Nurnberger and Sommer [14], and
Nurnberger [11]). On the other hand, the problem of the existence of
continuous selections for PSm,k is unsolved at present.
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